Rotare

Documentation

Thomas Lambert

February 13, 2023
Version: v1.0.0 -DEV



© Copyright 2022-2023 University of Liege
The entire code for the software ROTARE is provided under the MIT license.

This documentation and all the related material (figures, etc.) are provided under
the Creative Commons Attribution-ShareAlike 4.0 license (CC BY-SA 4.0).

©@®O


https://mit-license.org/
https://creativecommons.org/licenses/by-sa/4.0/

Contents

User manual

Install guide

1.1 Manual install (recommended) . . .. ... ... ... ... .....

1.2 Install using git . . .
1.3 Update. ... . ...

Usage

Configuration file

3.1 Configuration validation . . . . ... ... ... .. ..........

3.2 Inputvariables . . .

3.2.1 General simulation options (Sim) . . . .. ... ... .....
3.2.2 Models and solver options (Mod) . . . .. ... ........

3.23 Flow ... ..

3.2.4 Operating points . . . . . . . . ..ot et

3.2.5 Airfoil .. ..
3.2.6 Blade . ...

Troubleshooting

4.1 <Library> cannot be found or cannot be imported . ... ... ...

4.2 Is <feature> going to be implemented? When? . . . . ... .. ...

Technical documentation

Solvers

5.1 Coordinates systems
5.2 Rotor coefficients . .
5.3 Blade Element theory

10
12
13
13
14
16

18
18
18

19

21
21
21
22



5.4 Momentumtheory . .. ... ... ... ... ... 24

5.5 Solvers. . . . . . . e e e e e e 25
5.5.1 Leishmansolver .. ... .................... 26
5.5.2 Inductionfactor. . .. ... ... ... ... ... ....... 27
5.5.3 Induced velocities . .. ... ... ... ... ......... 28
5.5.4 Stahlhutsolver . .. ... ... ... ... .. ......... 29

5.6 Coaxial rotors . . . . . . . . . . . e e 29

5.7 Obliqueflows . . . . ... ... . . e 29

Extensions and corrections 30

6.1 Tip/hubloss. . . . ... ... ... . . ... 30



Nomenclature

Latin Letters

J

Cd

a

Cla

Cp

Cr

Advance ratio

Area

Axial induction factor
Drag coefficient
Rotor chord

Lift coefficient

Lift curve slope
Moment coefficient
Power coefficient
Thrust coefficient
Torque coefficient
Density

Rotor diameter
Drag

Lift

Mach number
Mass flow rate

Number of blades



Vg

Uj

w

Vw

Uy

U

Power

Prandtl’s tip-loss factor

Absolute radial position

Rotor radius

Nondimensional radial position, %
Reynolds number

Angular velocity

Tangential induction factor

Thrust

Torque

Freestream velocity

Axial velocity

Induced axial velocity

Induced tangential velocity
Relative velocity

Axial velocity in the far wake
Tangential velocity in the far wake

Tangential velocity

Greek Letters

¢

Q

a

Induced angle
Angular velocity

Angle of attack



¢ Rotor angle of attack

P Azimuthal angle

Bo Collective pitch angle

A Inflow ratio, %

A Induced inflow ratio, 5
B Pitch angle

o Rotor solidity, %

oy Local solidity, N%(%y)

A Blade sweep angle

¢ Swirl ratio, %

£ Induced swirl ratio, %
X Twist angle (stagger for propellers)
Subscripts

()
()

Far downstream of the rotor (slipstream)

Upstream of the rotor

Nomenclature



Introduction

ROTARE is a feature-rich and open-source implementation of the Blade Element
Momentum Theory (BEMT) in MATLAB.

This software can be used for the analysis and the design of all kinds of rotors:
helicopters main/tail rotors, aircraft propellers, wind/tidal turbines, etc.

ROTARE was developed primarily for teaching purposes at the University of Liege
(Belgium) by Thomas Lambert during his Ph.D. The code was later extended to add
different solvers, many extensions to the base methodology and to support more
complex geometries. It is now a complete analysis tool that can be used in a wide
range of applications outside of academia.

The present documentation is divided in two main parts:

1. The user manual (Part I), with practical details about the installation and

usage of the code.

2. The technical manual (Part II), with details regarding the code architecture
and all the theory underlying the implementation.

Disclaimer

ROTARE is still currently under heavy development. The first truly stable version will
be numbered 1.0.0. Versions prior to this one are not validated and may contain

errors and a few bugs.

Starting from v1.0.0, this documentation will reflect the state of the software at
each release. Development version of the documentation will be kept as updated as
possible with the code. These will be clearly labeled -DEV in the titlepage.


https://am.uliege.be
https://tlambert.xyz

Features

ROTARE currently supports blade geometries with varying twist, chord and airfoil. At
the moment, the software is only able to model single isolated rotors. These can be
studied in steady conditions (e.g., hovering helicopter) or axial flows (e.g., aircraft
propeller, helicopter in climb). More complex cases (oblique flows, coaxial rotors,
etc.) will be added later on.

The software currently supports a correction for the tip and hub losses. A few other
corrections and extensions will be implemented shortly, such as: tip/hub losses,
compressibility effects, spinner effects, etc (see Chapter 6 for more details on these
extensions).

Different solvers for the BEMT equations are implemented in the software (see
Chapter 5 for complete description). While they all solve the same initial set of
equations, they differ on the methodology for the resolution or the hypotheses made
to solve the equations. Even though some solvers are clearly superior to others,
this redundant implementation is especially useful for teaching purposes. Indeed,
it allows to compare the quality of the results, the convergence or the effect of
additional hypotheses.

While ROTARE is not specifically meant for wind turbine, it can model their behavior
as long as the user specifies all operating conditions (the same way we would
for an helicopter rotor). ROTARE is currently not able to model "windmilling" or
"autorotation". This will only be added at a later stage of the development.

Nomenclature



Part |

User manual



1.1

1.2

1
2

Install guide

ROTARE does not require any specific external program to be installed. The install
process is just a question of downloading the MATLAB script and functions and
placing them in at the correct place.

There are two possibilities to install ROTARE on your system.
1. Downloading the source code of the latest stable release from the release page
2. Cloning the repository with git

The manual download of files is recommended as it is easier, will not require any
specific knowledge about git and will always download the latest stable release of
ROTARE. The git method should be reserved to more advanced users. With this you
will have the latest developments, but some bugs are more likely to happen.

Manual install (recommended)

For the manual install you must download the latest stable release of ROTARE and
extract the archive on your computer.

In order to download the complete software (i.e., the code and the libraries) you
must download the item called Complete Code: rotare-x.x.x.zip. The items marked
as source code under assets do not contain the mandatory libraries and will prevent
ROTARE from running properly.

Install using git

Navigate to the directory where you want to place ROTARE and then simply use
git clone --recursive to download the source code and its libraries.

cd ~/Documents/

git clone --recursive https://gitlab.uliege.be/rotare/rotare


https://gitlab.uliege.be/rotare/rotare/-/releases

1.3

1.3.1

1.3.2

This is it. You now have the most up-to-date version of ROTARE installed on your
computer. Note that this version may not be completely stable.

You can open Matlab and navigate to €3 Documents/rotare/src/ to start using
ROTARE.

Update

In principle, the update process should never touch any of your files. However,
before any update, it is advised to make a backup of your existing configuration
files and results outside of ROTARE’s working directory.

Before updating

Prior to any update, it is heavily recommended to review the changelog (and/or the
release notes) and make sure the update does not introduce some breaking changes.
Normally, this should only be the case for Major versions of the code (e.g., going
from 1.x.x to 2.X.X).

If any breaking change is documented, please review the changelog or this docu-
mentation and proceed to the necessary adaptations.

Manual update

Repeat the steps described in Section 1.1 and copy the new files over the older ones.
You could also just extract it somewhere else and move your configurations files and
results to the new directory.

Note that if you modified some files of the source code, a simple copy/paste will
erase these changes.

1.3 Update



1.3.3 Update using git

Navigate to ROTARE’s directory and simply run

1 git pull --recurse-submodules

This will update ROTARE and its libraries. This should not modify your configuration
files or the results you generated. However, if you modified some portions of the
source code, it may fail to update. In that case, follow git’s instructions to either
remove your changes, or commit them and resolve the merge conflict.

1.3 Update

7



A~ W N =

N =

Usage

ROTARE is entirely controlled by a single input file, where the user specifies the
simulation parameters, the rotor geometry, the flow conditions, etc. See Chapter 3
for details about this configuration file. This is the only place that requires user’s
attention.

In order to use ROTARE, make sure you are in the S3rotare/src/ directory, or that
it is in MATLAB’s Path.

ROTARE can be called directly with a configuration file or without one. If no
configuration file is provided, the user will be prompted to select a configuration file
manually.

% Manual selection of input file
rotare
% With a specific config file

rotare(’configs/my_config.m’)

ROTARE comes with a few test configuration files (a template file and some reproduc-
tion of experimental results). You can verify that everything is working as intended
by running any of these files:

rotare(’configs/template.m’)

rotare(’configs/caradonnal981.m’)

rotare(’configs/knight1937 .m’)



3.1

3.2

Configuration file

A simulation with ROTARE is controlled by a single configuration file. This file
contains all data related to the behavior of the software, the models and solvers to
use, the flow, the operating points to analyze and the rotor geometry itself. These
five types of input are collected inside five different structures for easier handling in
the code.

This input file should be a MATLAB script (not a function). Examples of configuration
are given in &3src/configs/. In order to always have a fully-defined and working
configuration available, it is suggested to just copy the template and edit your copy
instead of directly working in the template (ROTARE will nag you if you are using
the template anyway).

Configuration validation

Before initiating a simulation, the user input file is passed through a validation
function automatically. This function checks if all inputs are properly defined (no
missing parameters) and formatted (correct type, dimensions, etc) before starting
the simulation. It also fixes small typos in the string parameters whenever possible
to ensure proper behavior of the software.

If the validation of a parameter fails, a comprehensive error message will be returned.
This should help the user fix their issues easily.

The validation function will also return preliminary warnings whenever some pa-
rameters may lead to potential issues (e.g., not enough elements to properly define
the geometry, etc.).

Input variables

In this documentation, all input parameters are structured as in the following
example.



3.2.1

Option Name [unit] ...............coiiiiea.nn. Example or allowed values
A brief description of the option with further indications regarding the input values
if necessary.

General simulation options (Sim)

The structure Sim contains all general parameters to tailor the behavior of the
software. It is itself made of sub-structures, ordered by themes.

Sim.Save

This structure holds all parameters related to the automated saving of the simulation
results.

Sim.Save.autosave .......... ... . i true,false
Automatically save the simulation results in a MAT-file. This MAT-file can be re-
imported later for post-processing and result analysis.

SiM.Save.OVerWIHIte ... . e true,false
Overwrite existing results when saving automatically. Results are only overwritten if
a file with matching name exist.

If set to false, a number will be added at the end of the filename and incremented
upon each save.

SimLSave.dir ... e >, . /results/’

Directory where the saved results will be exported.

Sim.Save.filename .......... ... . ‘myfile’

Filename to use for the saved results.

Sim.Save.appendInfo ......... ... true,false
Automatically append some simulation information to the FilenameBase.

Sim.Save.prependTime ......... ... ittt true,false
Automatically prepend a time code (format YYYYMMDDHHmmSS at the beginning of the
filename.

Sim.Save.timeFormat ........... ... .. ... . i, YYYYMMDDHHmmSS
Format of the timecode to use when Sim.Save.prependTime=true.

3.2 Input variables

10



Sim.Out

This structure holds all parameters related to the display of the simulation’s results.

SiM.Out.showPlots ... true,false
Display all plots and graphs at the end of the simulation.

SIM.OUL.ShoW3D ... true,false
Show a 3D view of the rotor and one with a single isolated blade.

Sim.Out.hubType ... ... See below
Type of hub (cone) to display on the 3D graph. See Nose cone design (wikipedia)
for representation of the nose cones.

Allowed values: ’none’ , ’cylinder’, ’conic’, ’blunted_conic’, ’bi-conic’,
’tangent_ogive’, ’blunted_tangent_ogive’, ’secant_ogive_regular’, ’secant_ogive_bulge’,

’elliptical’, ’parabolic’, ’power_series’, ’lv-haack’, ’vonkarman’.

The nose cones are only used for a more realistic visual representation of the rotor. The
type of hub itself has absolutely no impact in the actual computation of the BEMT
results.

SIM.OUL.CONSOIE ... true,false
Print the simulation results in the console.

Sim.Out.verbosity ...... ..o e e min,all
Verbosity level for the console output.

Sim.Warn

Enable or disable specific warnings during the simulations.

Note that only low severity warnings can be disabled this way from the configuration
file. These warnings usually indicate a poor rotor design or a poor operating
condition for a proper rotor. As these conditions are to be expected when the full
operating map of the rotor is being simulated, these low severity warnings can be
silenced to avoid cluttering the console.

However, the code may also output more severe warnings. These are typically
related to violated hypotheses and indicate unreliable results. As they are considered
more serious, it is by purpose that they can not be silenced easily through the
configuration file. Even though it is heavily discouraged, it is still possible to use
MATLAB built-in functions to disable these critical warnings.

3.2 Input variables

11


https://en.wikipedia.org/wiki/Nose_cone_design

3.2.2

SIMWarn.sonicTip ... i e true,false
Warns the user if the blade tip is trans/super sonic.

Sim.Misc

Other miscellaneous parameters.

SIM.Misc.nonDim . ... ’Us’ , ’EU?
The non dimensionalization factor used to get the thrust, torque and power coef-
ficient is not always the same between the US and the rest of the world. While
they differ only from a factor 0.5, this can lead to difficulties when comparing with
existing experimental data.

See section 5.2 for details about the rotor coefficients.

Sim.Misc.appli ... ‘prop’, ’heli’, ’turbine’
Specifies the type of application for the rotor studied. This impacts the definition
of the forces, moments and power coefficients calculated. It is also used to display
the 3D view in the appropriate position and to ensure proper sign for the output
variables, etc.

See section 5.2 for details about the rotor coefficients.

Models and solver options (Mod)

The structure Mod contains the parameters for the solvers and the extensions/correc-
tions to apply. It also specifies the numerical limits (number of iterations, precision,
etc.).

Mod.solvers .......... >leishman’, ’prop’, ’turbine’, ’stahlhut’, ’all’
Type of solver to use. The solvers are described in length in Chapter 5. It is possible
to provide a cell array with multiple solvers. Rotare will then loop for all solvers.

Mod.Ext

Parameters related to the extensions and corrections to apply to the base BEMT. See
section 6 for details regarding these models.

Mod.Ext.losses ..............ccoiiiiiii., ’none’, ’hub’, ’tip’, ’both’
Type of losses to consider (using Prandtl formula).

3.2 Input variables

12



3.2.3

3.2.4

Mod.Num

Numerical limits for the simulations.

Mod. NUM.CoNVCHIt [-] ..o e et le-4
Value for the convergence criterion to use when doing iterative processes. Note
that this criterion will be used to assess the relative error between two iterations. A
precision of 0.01% is often low enough to get valid results.

Mod. Num.maxlter [-] ... e e e e et le3
Maximum iterations allowed when doing iterative processes. If this number is
reached, the code will output an error and stop its execution.

Mod.Num.relax [-] ... e et 0.1
Relaxation factor to use in order to ease the convergence of iterative processes. A
low number would increase chance of success of the convergence process at the cost
of a slower converge. A higher number (up to 1) will proceed faster, but the solution
may diverge.

Flow

The structure Flow contains the parameters related to the flow itself.

Flow.fluid .......... ... .. ’air’, ’seawater’, ’freshwater’
Nature of the fluid. This is used to determine the density and viscosity of the fluid.
Note that if the fluid is air, the altitude (see Op.alt) is also used in order to determine
the proper density and viscosity (using ISA tables).

Operating points

The structure Op determines the various operating points of the rotor(s). These
four variables can be specified as vectors in order to study a given rotor geometry

over multiple operation points (thus creating a whole operating map of the rotor).

Obviously, it is also possible to simply specify scalars. In that case, ROTARE will
analyze of the rotor at one single point.

Note that ROTARE will loop over every combination of these four operating points.

Therefore, the total number of simulations can become very large should you decide
to study lots of these points.

3.2 Input variables

13



3.2.5

Op.speed [IM/S] ...t i e et Vector (1 x N3)
Axial velocity of the fluid.

Op.altitude [M] ... e Vector (1 x N)
The rotor altitude (e.g., flight altitude, wind turbine elevation).

This is only used to get a better estimation of the air density. If Flow.£f1uid is not air,
this is not used.

Op.rpm [1PmM] .o e Vector (1 x N)
The rotor angular velocity in RPM.

Op.collective [deg] ......coviiiiiiii e Vector (1 x N)
The collective pitch setting for the rotor. If the rotor has no collective pitch setting
(e.g., drone propeller), it is advised to let this option at 0 and only specify the twist
of the rotor in the Blade structure.

Airfoil

Data regarding the various airfoils that will be used along the blade. Note that
multiple airfoils can be specified. In that case, just use multi-dimension structures
(i.e., Airfoil (1), Airfoil(2),...).

Airfoil.coordFile ............................... ’airfoil_data/naca0012.dat’
Name of the file with the airfoil coordinates points. At the moment, this file is only
used to draw the 3D view of the rotor, but it is still a mandatory input. The best
source for such data files is to directly get the UIUC Airfoil Coordinates Database.
The data can be formatted either following Selig or Ledneicer convention (the two
types of format found on UIUC Database).

Airfoil.polarType ........ .ot ’file’, ’polynomial’
Type of polar input ROTARE should be using.

* file: A structure containing the polars should be passed to ROTARE.
* polynomial: The C; and Cy are given as polynomial expressions of a.

Airfoil.polarFile ......................... ’airfoil _data/naca0012-polar.mat’
Name of the files with the airfoil polars. This file should contain a Matlab structure
called Polar. Such file can be obtained by generating the airfoil polars with XFOIL
or XFLR5 and then exporting them with the xf2mat utility that can be found in the

3.2 Input variables

14


https://m-selig.ae.illinois.edu/ads/coord_database.html

free and open-source matlab_airfoil toolbox. Note that this toolbox is a required
library for ROTARE and should already be present and usable in your installation.

Airfoil.extrapMethod ............ . ... i See below
Only used when Airfoil.polarType="file’.

Extrapolation method to use in order to recover the lift and drag coefficients from
incomplete polars. Possible choices are:

* none: no extrapolation allowed. Will return an error if the solution requires
the calculation of an angle of attack outside of the range provided by the user.

* spline: spline extrapolation if angle of attack is outside the range of angles
given in the input polar. Strongly discouraged.

* viterna: Extrapolation of the polars over the entire range of angles of attack
according to Viterna formulas ??. Although this is not perfectly correct (as it
is the case for any extrapolation), this option is the one that is closer to the
reality. This is particularity useful when doing a sweep of operating conditions

and many off-design points must be studied.

Note that convergence may be more trickier to achieve in some edge cases and
off-design analysis with the low-order extrapolation methods. In operation at the
design point, extrapolation should not be required at all (as long as the polars are
provided for values between the minimum lift and the stall point).

Airfoil.clPoly [deg 1] .. it e Vector
Only used when Airfoil.polarType=’polynomial’.

Coefficients for the polynomial form of the lift coefficient, C;.
The vector should be in the form [py, po, ..., p,] to represent the polynomial

n
Cr=> pia"
=1

, where « is the angle of attack in degree.

Airfoil.cdPoly [deg 1] ... Vector
Only used when Airfoil.polarType=’polynomial’.

Same as Airfoil.clPoly, but for the drag coefficient.

3.2 Input variables

15


https://gitlab.uliege.be/am-dept/matlab_airfoil_toolbox

3.2.6 Blade

The structure Blade contains the parameters related to the rotor and blade geometry.
If there are multiple rotors (i.e.,, currently only for coaxial case), you must specify
these parameters for both rotors. If the two rotors are the same, a simple way to do
that consists in adding Blade (2) = Blade after the definition of the first rotor.

The blade dimensions are specified through a vector of at least two elements.
The first element always correspond to the blade root, the last one is always the
blade tip. The blade geometry will then be constructed by interpolating points at
the different segments, using a spline interpolation (it is therefore not necessary to
add every single blade section in these vectors). The vectors can contain as many
points as desired in order to refine the mesh or better control the overall geometry
of the blade.

Note that the vectors must all have the same dimensions as Blade.radius. The
other variables (chord, twist, iAf) all correspond to the value in the base stations
defined in Blade.radius.

Blade.nBlades [-] ...oovvn it 3
Number of blades on the rotor.

Blade.pitchRef ............. ... ...l ’zerolift’,’chordline’
It is common to define the pitch angle of a blade element with respect to the zero-lift
angle of its airfoil instead of the chord line. This parameter ensures the correct
reference is taken.

Blade.radius [M] ..ottt e [7ro0ts - - - » T'tip]
Radial position of the elements. The first element corresponds to the root of the blade
(include the cutout) and the last one corresponds to the blade tip. Intermediary
points may be added to tweak more precisely the blade geometry.

Blade.chord [IM] ....cotvritt et [croots - -+ » Crip]
Chord of the elements.

Blade.twist [deg] .......cooiiiiii i [Oroots - - - » Orip]
Twist (or stagger) angle of the elements. Note that if Mod.collective is not O, the
actual pitch of the elements will be the sum of the twist and the collective.

Blade.iAirfoil ...... ... Liroot, - - - » ftip]
Index of the Airfoil(i) to use for each element. As there is no simple way to
interpolate between different airfoils, the same airfoil will be applied on all sections
until a new airfoil is specified.

3.2 |Input variables 16



Example:

Section 1 2 3

Radius 0.1 05 1
Airfoil 1 2 3

In that case, the Airfoil(1) will be applied for all elements between [0.1;0.5] m,
the Airfoil(2) will be used for all elements between [0.5; 1| m and the Airfoil(3)
will be used for the tip.

Blade.nElem [-] ..o 100
Number of blade elements to use in the Blade Element Method. The elements
will be linearly spaced along the span of the blade (defined by the two bounds of

Blade.radius).

Blade.hubPos [m] ... i e e [0, O, 0]
Coordinates of the rotor center point. This parameter is important for multi-rotor
systems. For single rotors, it is discarded.

3.2 Input variables

17



4.1

4.2

Troubleshooting

This chapter lists the most common issues encountered when using ROTARE. If you
find an issue that is not documented here, please check the issue tracker and fill a new
issue report if applicable. You can also contact me directly at t.lambert@uliege.be.

The software contains many checks and is able to detect a common issues by itself.
Please make sure you read the error message properly as they often indicate possible
solutions.

<Library> cannot be found or cannot be imported

ROTARE depends on some libraries to conduct some simple tasks (mostly airfoil and
polars manipulations). It seems that these were not installed properly. Please refer
to Chapter 1 for the correct install procedure.

If ROTARE was cloned using git but without the --recursive tag, you can simply
call the following to download the libraries as well:

git submodule update --init

If ROTARE was installed manually, you probably did not download the proper archive.
Please download the archive called COMPLETE CODE: rotare-X.X.X.zip and not
the "Source code" under "Assets".

Is <feature> going to be implemented? When?

A basic roadmap can be found in the root of the repository. This outlines the planned
developments and classes them in the most likely order of release. The dates of the
releases are voluntarily left out to prevent breaking any promises.

18

18


https://gitlab.uliege.be/rotare/rotare/-/issues

Part Il

Technical documentation



Introduction

This second part of ROTARE’s documentation concerns the technical aspect of the
code and its implementation. The goal is not to give a full lecture on the Blade
Element Momentum Theory, but rather to write out the main equations and detail
the way they are implemented and solved within ROTARE.

The first chapter details the architecture of the code itself and is more aimed at
developers that want to extend the possibilities offered by the software.

The following the chapters are directed towards users that want an in-depth knowl-
edge of the equations and solving process implemented in ROTARE. Finally, some
basic validation cases are provided against well-known literature examples.

Disclaimer

This section will be written at a later stage in the development. It currently contains
small errors, notes, etc and has not be proofread.

20

20



5.1

5.2

Solvers

FiXme: While ROTARE does not fully support coaxial rotors or oblique flows yet, the
current documentation is written as if it was already the case.

Coordinates systems

The rotors may not always be aligned with the freestream. It is therefore important
to properly define the reference frames before developing the equations. In specific,
the first reference frame will simply be the internal one. The second frame is defined
as the tip plane path of the rotor and will be denoted TPP. This frame is defined
solely be the rotor disk. In oblique flows, it is angled with respect to the inertial
frame, while in axial flows it lies perpendicular to the freestream.

Rotor coefficients

In order to better compare different rotors or their performance under different
conditions, it is often best to express the forces by means of non-dimensional
coefficients. While the principle is the same for all applications, different factors are

used to non-dimensionalize these forces in rotors, propellers or turbine applications.

Moreover, the general convention applied in the United States for rotor differs from
the one used in the rest of the world [Lei06], where an additional one-half factor is
used in the denominator.

The Table 5.1 lists the main coefficients in the US conventional notation. The other
forces (longitudinal, lateral) or moments (rolling, pitching) are defined similarly to
the thrust and torque coefficients respectively.

Note that the angular velocity in the rotor notation is €2, expressed in [1/sec] while
for the propellers it is n, expressed in [RPS].

21

FiXme!

21



Table 5.1.: Coefficients definitions for rotors, propellers and turbines — US notation.

Measure Rotors  Propellers Turbines
T T :
Thrust coeff, C'r VAR 2D FiXme: todo
Thrust torque, Co < < FiXme: todo
’ pAQ2R3 pn2D>
Thrust power, Cp L L FiXme: todo

pA(QR)3 pn3 D5

5.3 Blade Element theory

The Blade Element Theory postulates that a rotor can be represented as a collection
of 2D elements which are radially distributed over the blade. It further assumes that
the performance of an individual element is completely independent of the influence
of the other elements. Each element can therefore be represented as a simple 2D

airfoil section.

ZTPP

i Lovrrr

U

Figure 5.1.: Velocity diagram for a blade element dy at location y.

The representation in Figure 5.1 showcases a single blade element with its associated
velocity triangles and forces. The element lies at a total pitch angle § with respect
to the rotor disk. This pitch can be decomposed in different contributions:

B=x+Po (5.1

5.3 Blade Element theory 22



Where Yy is the twist angle of the blade (i.e., a radial variation of pitch along the
blade) and f is the collective pitch of the blade (i.e., a modification of the pitch
constant over the entire blade). Not that, by convention, the pitch angle is usually
given with respect to the zero-lift line and not the chord line of the airfoil.

The resultant velocity is the sum of the velocity components acting in the x7pp and
2ppp directions, respectively U and V.!.

In oblique flows (i.e., when the flow is not perfectly perpendicular to the rotor disk),
the tangential velocity is dependent on blade instantaneous position, which can be
represented though the azimuthal angle .

V="V,sin( + v; (5.2)
U= Vycos(siny + Qy — u; (5.3)
W =4/V2+U? 5.4)

The inflow angle (sometimes called induced angle) ¢ expresses the angle between
the resultant velocity and the rotor disk:

tan ' = g (5.5)

By convention, ¢ is positive when W is directed towards the disk and negative when
W points outwards.

The effective angle of attack at the element can therefore be obtained by the
difference of the element’s pitch and the inflow angle. Note that, as the pitch angle
is often given with respect to the airfoil zero-lift line, the zero-lift angle must be
subtracted as well.

a=(B-a)—¢ (5.6)

The angle of attack, along with the Reynolds number can be used to determine the
value of the airfoil lift and drag coefficient. The airfoil polar coefficients are usually
given in the form of tabulated data, either directly from XFOIL or XFLR5 or via
other means.

ci(o, Re) and ci(a, Re) (5.7)

There is no contribution in yrpp as the BEMT represents the blade through 2D elements

5.3 Blade Element theory

23



5.4

The elemental lift and drag can now be obtained though the known aerodynamic
coefficients, alongside the dynamic pressure and the element’s chord.

1 1
L = 5pw%clazy dD = ipwzccddy (5.8)

Finally, the more useful notation consist in replacing the forces in the axes of the
rotor and derive the thrust (7), torque (Q) and power (P) contribution of the

element
dT = Nyp(dLsin ¢ — dD cos ¢) (5.9)
dQ = Ny(dL cos ¢ + dDsin @)y (5.10)
dP = Ny(dL cos ¢ + dDsin ¢)y$2 (5.11)

Momentum theory

The momentum theory considers the rotor as an infinitesimally thin actuator disk.

Following this theory, we consider that

* the flow velocity and pressure are constant on every section normal to the
throughflow in the rotor stream tube;

* the rotor induces an abrupt change of the flow conditions by causing a pressure
jump across the disk.

Following the Blade Element Theory, the overall control volume can be further
refined in infinitesimal concentrically arranged annuli whose area is expressed by
dA = 2mydy. The mass flow rate through any individual annulus is then given by:

m = p(V+wv;)dA = p(V+v;)2mydy (5.12)

Furthermore, it can be showed that axial induced velocity at the disk is equal to half
the slipstream velocity in the far wake: v; = “%. The thrust can then be expressed
using the momentum balance in the axial direction as:

dT =m(Vyg — V)
= MUy

= m(2v2)

(5.13)

= 4mwp(V + v;)viydy

5.4 Momentum theory

24



5.5

The ideal power can be calculated similarly as it is expressed by the product of the
thrust and the induced velocity:

(5.14)
= dmp(V+ vi)viydy

FiXme: torque equation

Solvers

The essence of the Blade Element Momentum Theory, is now to combine the Blade
Element equations for the thrust and power (5.9, 5.11) and the corresponding
momentum equations (5.13, 5.14). This newly formed system can then be solved
for the inflow angle and the induced velocity at the disk.

Unfortunately, solving such a non-linear system is not trivial. ROTARE does that by
implementing four different solvers, all based on the same set of initial equations.
These solvers differ by introducing some additional assumptions or by modifying
the nonlinear system of equations (mostly the momentum equations) in order to
simplify its formulation or ease the convergence of its solution. A quick comparison
of the solvers is presented in Table 5.2.

Table 5.2.: Comparison ROTARE’s solvers

Leishman indFact indVel Stahlhut

Assumptions Small angles
VU - - -
Drag < Lift

Applications Hover/idle Any? Any Any
and slow axial
flow
Convergence  Guaranteed Medium Medium Easy
CPU time Fastest High High Medium

2Technically it does not work with idle/hovering rotors directly. This limitation has been circumvented
in ROTARE.

5.5 Solvers

FiXme!

25



5.5.1 Leishman solver

This solver is based on the methodology described by Leishman in [Lei06]. This
solver makes some strong assumptions on the flow and the operation of the rotor in
order to linearize the system as much as possible. These assumptions correspond to
a rotor lightly loaded, which is linked to small angles approximations. This solver is
therefore only suitable for hovering rotors and slow axial flows.

Assumptions

The following three assumptions are made in order to linearize the system:

1. In-plane induced velocities are negligibles:

WaU u; ~ 0 (5.15)
2. Induced angle ¢ is small:
V .
qﬁmﬁ sin ¢ ~ ¢ cos¢ ~ 1 (5.16)

3. Drag is much smaller than lift and does not contribute much to the thrust so
that:
dDsin¢ ~ 0 dD cos ¢ ~ dD (5.17)

4. The lift coefficient is linear:
€ €l (5.18)

Note that the fourth assumption can be pushed further by considering that ¢; , = 27
(thin airfoil theory). If the airfoil polars are provided, it is also possible to retrieve
the true lift curve slope for more precision. Finally, ROTARE allows to remove this
hypothesis by calculating the proper lift coefficient using the polars provided instead
of assuming the linear law. However, this requires an additional iterative scheme

and extends a bit the calculation time.

5.5 Solvers

26



5.5.2

Equations

The complete derivation of the equations is left out of this manual. Please refer to [Lei06]
for more details.

The BEMT system formed by (5.9, 5.11, 5.13 and 5.14) can be rewritten by taking
into account the assumptions just described.

By introducing some interesting non-dimensional factors and ratios such as the local
solidity o, the relative position of the element r or the inflow ratio, \; the thrust
equation can be rewritten as

SO CTRINS TP 519

where F' is the Prandtl tip-loss factor (see Section 6.1). This equation is a quadratic
expression for the inflow ratio A whose solution is:

Oi1a . Ao\’ | OlCLa o o <UlCza )\oo>2
)= a, Ax Cla _ (%, Ax 5.2
A A ﬂ R R R (5.20)

If the linear lift coefficient assumption is removed, then the inflow equations be-

comes:

A 2 )2
A Aoo) = = + J (Ufg - ZO) (5.21)

Induction factor

This solver is commonly used for the study of propellers or wind turbines. It does
not rely on additional assumptions, but rather on a reformulation of the momentum
equations in terms of induction factors. This formulation lighten a bit the expressions
and has the benefit to be quite intuitive. Its main drawback is that the new equations
are not directly compatible with the analysis of rotors at zero external velocity (such
as helicopter in hover or propellers in idle).

The equations are derived by first defining the axial and tangential (swirl) induction

factors:
V=>014a)Vs (5.22)
U=(1-0b)Qy (5.23)
5.5 Solvers

27



5.5.3

and then inject them in the momentum equations (5.13, ??).

As it can be seen directly in (5.22), this formulation falls down when the free stream
velocity, V., is zero. To circumvent that limitation, ROTARE keeps the original
form of (5.13) when the external velocity is zero but still uses (5.23) in the torque
equation.

Using the inflow factors, the thrust equations becomes

dT = 47p(V + v;)viydy

) (5.24)
=47mp(1 + a)aViydy

and the torque equation becomes

dQ = 2myp(V+ v;)(20Qy)yd
yp( )(20Qy)ydy (5.25)
= 4713 p(1 + a) Voo bQdy

Resolution

The system made of the Blade Element equations and the new form of the momentum
equations is then solved using MATLAB’s solve function in order to determine the
value of both induction factors. The solution is initialized with an axial inflow factor
of 0.01 and a tangential induction factor of 0 (no swirl).

Induced velocities
This solver is a pure resolution of the initial system, without any major rewrite or

additional assumptions. It is a bit more formal, but has the benefit of being directly
usable in any flow condition.

Resolution
The system is solved using MATLAB’s solve function in order to determine directly

the induced velocities at the rotor disk. The solution is initialized by considering
that the axial induced velocity is 0.01 m/s and the tangential component is O.

5.5 Solvers

28



5.5.4

5.6

5.7

Stahlhut solver

This solver relies on a complete rewriting of the system in a single nonlinear tran-
scendental equation. This improves significantly the convergence of the system and
facilitate the determination of a solution. The only drawback is that the equation
formed is much more complex and less intuitive than the ones at the base of the
system.

Coaxial rotors

The analysis of coaxial rotors is currently supported for either hovering/idle rotors
or axial flows only.

In that cases, the first rotor is evaluated exactly as if it was in isolation. The axial
and swirl velocity induced by the first rotor as then passed to the second rotor as
inlet velocity. The contraction of the wake is then calculated based on the distance
between the two rotors and the velocity profile is then adapted accordingly. The
second rotor is then evaluated as if it was in isolation as well, but with the new inlet
velocity profile.

Oblique flows

ROTARE currently implements oblique flows for single isolated rotors only. The
analysis of such flows for multi-rotor systems involves the determination of the
actual wake geometry. This is commonly done through other methods (vortex
sheets), which is currently out of the scope of this software.

For oblique flows, the solution of the blade elements will depend on the azimuthal
position of the blade. It is therefore required to calculate the forces for all azimuthal
positions and then integrate around the complete circle.

5.6 Coaxial rotors

29



Extensions and corrections

6.1 Tip/hub loss

30

30



List of Corrections

While ROTARE does not fully support coaxial rotors or oblique flows yet, the

current documentation is written as if it was already the case. . . . . . 21
................................... 21

todo . . . e e e 22
todo . .. e e e e e e 22
1076 Lo T 22
tOrqUe eqUALION . & & v v v v v et e e e e e e e e e e e e e e e e e e e e e e 25
............................. 27
............................. 27

31

31



	Cover
	Contents
	I User manual
	1 Install guide
	1.1 Manual install (recommended)
	1.2 Install using git
	1.3 Update
	1.3.1 Before updating
	1.3.2 Manual update
	1.3.3 Update using git


	2 Usage
	3 Configuration file
	3.1 Configuration validation
	3.2 Input variables
	3.2.1 General simulation options (Sim)
	3.2.2 Models and solver options (Mod)
	3.2.3 Flow
	3.2.4 Operating points
	3.2.5 Airfoil
	3.2.6 Blade


	4 Troubleshooting
	4.1 <Library> cannot be found or cannot be imported
	4.2 Is <feature> going to be implemented? When?


	II Technical documentation
	5 Solvers
	5.1 Coordinates systems
	5.2 Rotor coefficients
	5.3 Blade Element theory
	5.4 Momentum theory
	5.5 Solvers
	5.5.1 Leishman solver
	5.5.2 Induction factor
	5.5.3 Induced velocities
	5.5.4 Stahlhut solver

	5.6 Coaxial rotors
	5.7 Oblique flows

	6 Extensions and corrections
	6.1 Tip/hub loss



